

Cartesian Interface in ROS

Contents

	Introduction
	Target of this project

	Contents of this document

	Contribution

	Requirements

	Project limitations

	Existing Cartesian Interfaces in ROS
	rep-I0003

	Willow Garage (2010)

	Banachowicz

	Banachowicz2

	ROS-Answers question by arennuit

	Pilz

	Descartes Trajectory

	MoveIt!

	johnmichaloski

	FZI

	Gijs van der Hoorn

	Rethink Robotics Intera SDK

	Vendor interfaces for Cartesian motions
	KUKA

	Universal Robots (UR)

	Fanuc

	Doosan

	Franka Emika

	ABB

	Yaskawa

	Summary of vendor interfaces

	Conclusion / Proposed Interface
	Components

	TLDR; Proposed interface

ToDos

Introduction

This document serves as a design documentation to create a Cartesian trajectory definition for ROS.
As there have been many proposals in the past, but there is no standardized interface, this
document tries to incorporate as many suggestions as possible to derive a common definition useful
to as many people as possible.

Target of this project

This is part of a larger project that tries to achieve Cartesian trajectory execution on Universal
Robots robotic arms. Expected outcome of this project is to provide a Cartesian equivalent of the
control_msgs/FollowJointTrajectory.action [http://docs.ros.org/api/control_msgs/html/action/FollowJointTrajectory.html].

Current ROS-based approaches often use motion planing to interpolate between individual Cartesian poses
(e.g. MoveIt! [https://moveit.ros.org/], Descartes [http://wiki.ros.org/descartes]) or implement Cartesian pose tracking for dynamic targets
(e.g. cartesian_controllers [https://github.com/fzi-forschungszentrum-informatik/cartesian_controllers]).

While these approaches work fine for many applications, there are also use cases that need a Cartesian trajectory approach. Especially
in the industrial context, such as for welding or gluing applications, users classically define a tool path in
Cartesian space that should be followed precisely.

As most robot vendors offer programming interfaces to define robot motions in Cartesian space it
does make sense to also support these interfaces from ROS instead of always taking the detour
of joint-based control. Cartesian control on the other hand introduces additional aspects that need consideration, such as resolving ambiguities in
joint space that arise for obtaining identical Cartesian poses. A Cartesian trajectory interface needs to cover this as well.

Contents of this document

This document will start with a summary of existing suggestions for Cartesian interfaces known to
us. A conclusion chapter will form a proposed interface taking those interfaces into account.

Additional to that we will have a look at native robot interfaces to get an overview how industrial
vendors interface their robots.

Contribution

We would like to generate an interface suitable for
as many people as possible. Therefore, any input is highly welcome! This project is hosted at FZI’s
github orgnanization [https://github.com/fzi-forschungszentrum-informatik/fzi_robot_interface_proposal]

Please get in touch with us and enter the discussion. Either open a new issue if you want to commit
on something or even write a Pull Request with a suggestion.

Requirements

From the motivation above and the shown possible use cases the following requirements are defined
for the developed interface

	Similar to control_msgs/FollowJointTrajectory.action

With this proposal we aim to offer Cartesian trajectory execution in terms of trajectories
consisting of multiple waypoints, where motion between waypoints is interpolated in Cartesian
space. This interface should be similar in use to the standardized joint trajectory interface.
Therefore, not only a trajectory representation shall be developed, but also an action interface
around it.

	Include posture definitions

As mentioned above, when defining Cartesian poses there might be ambiguities in joint space for
that pose. There should be a methodology included that helps resolving these ambiguities. This
gives users control over repeatable robot motion.

	Composable structure

Many use cases require tool activation / modification during trajectory execution, for example
activating adhesive extrusion or a welding torch. With this in mind, the proposed trajectory
interface should be extendible to introduce different aspects of trajectory execution
such as adding IO commands to the trajectory. Example:

#Trajectory
TrajectoryPoint[] points
IOCommand[] io_commands

	Transparent error codes

When trajectory execution fails users should know the reason for that. With Cartesian motions
additional error sources such as an IK solver not finding a solution are relevant and should
therefore be included into the trajectory action definition. This has to be further investigated.

Project limitations

While this document proposes an interface for executing Cartesian trajectories there are a couple of
aspects not being discussed inside this design document:

	Trajectory-IO synchronization

While being mentioned earlier IO synchronization is not explicitly covered inside this document.
As written, the interface should be designed in a way that it could easily be extended with such a
feature, though.

	Actual trajectory execution / interpolation

There are multiple steps involved between a Cartesian trajectory interface and actual motion
execution. There are different strategies that can be implemented, where selection of such a
strategy highly depends on the actual use case. This will not be part of this interface
definition.

	Trajectory planning (interface)

As stated above, this proposal’s intention is to create a Cartesian counterpart of
trajectory_msgs/JointTrajectoryPoint [http://docs.ros.org/melodic/api/trajectory_msgs/html/msg/JointTrajectoryPoint.html],
trajectory_msgs/JointTrajectory [http://docs.ros.org/melodic/api/trajectory_msgs/html/msg/JointTrajectory.html] and
control_msgs/FollowJointTrajectory.action [http://docs.ros.org/api/control_msgs/html/action/FollowJointTrajectory.html].

Therefore, planning and parameterizing trajectories as for example MoveIt!’s
computeCartesianPath() [http://docs.ros.org/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#afd29c4dc55b10564102cf393cd38c71d]
function are out of this project’s scope.

Existing Cartesian Interfaces in ROS

	rep-I0003
	Feature list

	Features required from hardware / driver

	Message definition

	Willow Garage (2010)
	Feature list

	Features required from hardware / driver

	Message definition

	Field details

	Banachowicz
	Feature list

	Features required from hardware / driver

	Message definition

	Banachowicz2
	Feature list

	Features required from hardware / driver

	Message definition

	ROS-Answers question by arennuit
	Feature list

	Features required from hardware / driver

	Message definition

	Pilz
	Feature list

	Features required from hardware / driver

	Message definition

	Descartes Trajectory
	Feature list

	Features required from hardware / driver

	Message definition

	MoveIt!
	Feature list

	Features required from hardware / driver

	Message definition

	johnmichaloski
	Feature list

	Features required from hardware / driver

	Message definition

	FZI
	Feature list

	Features required from hardware / driver

	Message definition

	Field details

	Gijs van der Hoorn
	Feature list

	Features required from hardware / driver

	Message definition

	Field details

	Rethink Robotics Intera SDK
	Feature list

	Features required from hardware / driver

	Message definition

rep-I0003

REP for defining Cartesian paths. This is intended to be an interface for a Cartesian path planner,
rather than a path execution.

Upstream URL: https://github.com/ros-industrial/rep/blob/master/rep-I0003.rst

Feature list

	Contains industrial primitives such as linear, circular, etc.)

	Uses a segment representation

Features required from hardware / driver

	Control interface

	Cartesian motion primitives

Message definition

[CartesianPath]
waypoint[N]
 constraints[K]
 ??
 ref frame
 tcp frame
 process parameters[]
segment[N-1]
 type (linear, joint, circular)
 acceleration
 velocity

Willow Garage (2010)

Part of http://wiki.ros.org/trajectory_msgs/Reviews/Cartesian%20Trajectories_API_Review_2013_06_05

Specified inside http://wiki.ros.org/robot_mechanism_controllers/Reviews/Cartesian%20Trajectory%20Proposal%20API%20Review

Feature list

	Trajectory points defined by pose, twist and posture (joint configuration of joints defined in
posture_joint_names, It is undecided where the posture should go. Into the trajectory points
or as a separate field.)

	Contains path and goal tolerances in
* absolute position distance
* absolute rotation angular error
* absolute linear velocity
* absolute angular velocity

	queue field which is not really clear how it should be used

Features required from hardware / driver

	Control interface

Message definition

[CartesianTrajectoryGoal]
CartesianTrajectory trajectory
 Header header # A stamp of 0 means "execute now"
 PoseStamped tool # The frame which is being controlled
 string[] posture_joint_names
 CartesianTrajectoryPoint[] points
 duration time_from_start
 Pose pose
 Twist twist
 float64[] posture
 JointTrajectory posture # For determining the redundancy
 std_msgs/Header header
 string[] joint_names
 trajectory_msgs/JointTrajectoryPoint[] points
 float64[] positions
 float64[] velocities
 float64[] accelerations
 float64[] effort
 duration time_from_start
CartesianTolerance path_tolerance # Tolerance for aborting the path
 float64 position
 float64 orientation # Permitted angular error
 float64 velocity
 float64 angular_velocity
CartesianTolerance goal_tolerance # Tolerance for when reaching the goal is considered successful
bool queue

[CartesianTrajectoryResult]
int32 error_code # 0 if successful
CartesianTrajectoryPoint cartesian_state
JointTrajectoryPoint joint_state
Twist pose_error
Twist twist_error
CartesianTolerance path_tolerance # Current tolerance used for the path

[CartesianTrajectoryError]
int32 SUCCESSFUL = 0
int32 ROOT_TRANSFORM_FAILED
int32 TOOL_TRANSFORM_FAILED
int32 PATH_TOLERANCE_VIOLATED
int32 INVALID_POSTURE

Field details

Control (Tool) Frame

The tool field describes the control frame for this trajectory. The poses and twists of the trajectory will be applied in this frame, and the tolerances will be measured in this frame. The tool frame should be rigidly attached to the “tip” frame given in the controller configuration; the transform between the two will only be computed once.

Redundancy Resolution

Each cartesian trajectory point contains a posture, which is an array of joint positions for the joints listed in posture_joint_names. The controller attempts to track the posture in the nullspace of the cartesian movement. The posture value for each point is either the given value, or the previous posture value if the array is empty. The posture is linearly interpolated between trajectory points. If the posture array is empty in every point, then the posture is uncontrolled.

Tolerances

Tolerances are specified for the entire trajectory (path_tolerance) and for the success conditions (goal_tolerance). In both, a tolerance of 0 is interpreted as “unspecified”, and a default tolerance (such as a parameter to the controller) is used. A tolerace of -1 means “no tolerance” and the corresponding field is ignored when tolerances are checked.

There are two possible ways to handle the path tolerance:

	Abort if the path tolerance is violated

	Stall the desired and allow the controller to catch up if the path tolerance is violated.

Option 1 is the most straightforward to implement, but more difficult to use. I’m pretty sure I can implement option 2 by stalling the time used for computing the desired point. I’m considering making this choice a parameter of the controller so the user can choose either behavior.

Banachowicz

Proposed by Konrad Banachowicz

Part of http://wiki.ros.org/trajectory_msgs/Reviews/Cartesian%20Trajectories_API_Review_2013_06_05

Feature list

	Multiple possible effector names

	Multiple trajectories in one goal (One for each effector?)

	Trajectory points consist of pose and twist

	Contains impedance for each effector with
* Center of compliance
* stiffness
* damping

	Contains path and goal tolerances in
* absolute position distance
* absolute rotation angular error
* absolute linear velocity
* absolute angular velocity

	Contains posture information to handle redundancies (for each effector???)

	Contains a nullspace impedance

Features required from hardware / driver

	Control interface

	Impedance control

Message definition

[CartesianTrajectoryGoal]
Header header # A stamp of 0 means "execute now"
string[] effector_names
CartesianTrajectory[] trajectory
 Pose tool # The frame (offset ?) which is being controlled or it can be treated as separate effector ?
 CartesianTrajectoryPoint[] points
 duration time_from_start
 Pose pose
 Twist twist
CartesianImpedance[] impedance
 Pose center_of_compliance # or it can be treated as separate effector ?
 TBD stiffness % cartesian stiffness
 TBD damping % damping ratio
CartesianTolerance[] path_tolerance # Tolerance for aborting the path
 float64 position
 float64 orientation # Permitted angular error
 float64 velocity
 float64 angular_velocity
CartesianTolerance[] goal_tolerance # Tolerance for when reaching the goal is considered successful
string[] joint_names
JointTrajectoryPoint[] posture # For determining the redundancy
JointImpedance[] nullspace_impedance
 float64[] stiffness
 float64[] damping

Banachowicz2

Proposed by Konrad Banachowicz, 2nd version

Part of http://wiki.ros.org/trajectory_msgs/Reviews/Cartesian%20Trajectories_API_Review_2013_06_05

Feature list

	Trajectory points consist of pose and twist

	Contains impedance for each trajectory point

	target_frame_id

	stiffness (6D)

	damping (6D)

	Contains path tolerance in

	translation

	orientation

	twist

	wrench

	Contains posture information to handle redundancies (for each effector???)

	Contains a nullspace impedance

Features required from hardware / driver

	Control interface

	Impedance control

Message definition

[CartesianTrajectory]
Express trajectory of frame target_frame_id in relation to frame header.frame_id .
Header header # stamp - trajectory start time, frame_id - trajectory reference frame
string target_frame_id # target controlled frame
CartesianTrajectoryPoint[] points
 duration time_from_start
 Pose pose
 Twist twist

[CartesianImpedance]
Parameters of spring-damper located between frame header.frame_id and frame target_frame_id.
Header header # stamp - trajectory start time, frame_id - spring-damper base frame
string target_frame_id # spring-damper end frame
CartesianImpedancePoint[] points
 duration time_from_start
 CartesianStiffness stiffness
 Vector3 translational
 Vector3 rotational
 CartesianDamping damping
 Vector3 translational
 Vector3 rotational

[CartesianConstraints]
Constraint the relation between header.frame_id and target_frame_id.
Header header # stamp - time of constraint activation
string target_frame_id
duration time_from_start # duration of constraint activation
TranslationConstraint translation
OrientationConstraint orientation
Twist twist
Wrench wrench

[CartesianTrajectoryGoal]
CartesianTrajectory[] trajectory
CartesianImpedance[] impedance
CartesianConstraints[] path_constraints # Tolerance for aborting the path
JointTrajectory[] posture # For determining the redundancy
JointImpedance[] nullspace_impedance

ROS-Answers question by arennuit

https://answers.ros.org/question/196954/cartesian-trajectory-description-which-message-type

Feature list

	Contains accelerations

Features required from hardware / driver

	Control interface

Message definition

Note: The source itself does not contain a message definition, so this is an interpretation of the
plain text.

[CartesianTrajectoryGoal]
string reference_frame # could also come through header
CartesianTrajectoryPoint[] points
 duration time_from_start
 Pose pose
 Twist twist
 Twist acceleration

Pilz

Not used in a message style but implemented in C++ code. Repo:
https://github.com/PilzDE/pilz_industrial_motion

Feature list

	Contains accelerations

Features required from hardware / driver

	Control interface

Message definition

[CartesianTrajectory]
string group_name # MoveIt! planning group name
string link_name
CartesianTrajectoryPoint[] points
 Duration time_from_start
 Pose pose
 Twist velocity
 Twist acceleration

Descartes Trajectory

	http://wiki.ros.org/descartes_trajectory

	https://github.com/ros-industrial-consortium/descartes/tree/melodic-devel/descartes_trajectory/include/descartes_trajectory

	https://github.com/ros-industrial/rep/blob/master/rep-I0003.rst

Feature list

	Contains reference implementations for path sepcification and interface for more customized methods

	Offers three implementations for Trajectory Points

	Joint point [JointTrajectoryPt]: Represents a robot joint pose. It can accept tolerances for each joint

	Cartesian point [CartTrajectoryPt]: Defines the position and orientation of the tool relative to a world coordinate frame. It can also apply tolerances for the relevant variables that determine the tool pose.

	AxialSymmetric point (5DOF) [AxialSymmetricPt]: Extends the CartTrajectoryPt by specifying a free axis of rotation for the tool. Useful whenever the orientation about the tool’s approach vector doesn’t have to be defined.

	Hybrid Trajectories possible

	All trajectory points take an optional TimingConstraint

Features required from hardware / driver

Message definition

[JointTrajectoryPt]
TolerancedJointValue joints
Frame tool
Frame wobj
TimingConstraint timing

[CartTrajectoryPt]
Frame wobj_base
TolerancedFrame wobj_pt
Frame tool_base
TolerancedFrame tool_pt
double pos_increment
double orient_increment
TimingConstraint timing

[AxialSymmetricPt]
double x
double y
double z
double rx
double ry
double rz
double orient_increment
FreeAxis axis
TimingConstraint timing

MoveIt!

Implemented in moveit_msgs:
https://github.com/ros-planning/moveit_msgs/blob/master/msg/CartesianTrajectory.msg

Feature list

	Contains accelerations

Features required from hardware / driver

	Control interface

Message definition

[CartesianTrajectory]
Header header

The name of the Cartesian frame being tracked with respect to the base frame provided in header.frame_id
string tracked_frame

CartesianTrajectoryPoint[] points
 CartesianPoint point
 geometry_msgs/Pose pose
 geometry_msgs/Twist velocity
 geometry_msgs/Accel acceleration
 duration time_from_start

johnmichaloski

Upstream URL:
https://github.com/johnmichaloski/ROS/blob/master/nistfanuc_ws/src/cartesian_trajectory_msg/msg/CartesianTrajectoryGoal.msg

This is very similar to Willow Garage (2010).

Feature list

	Trajectory points defined by pose, twist and posture (joint configuration of joints defined in
posture_joint_names, It is undecided where the posture should go. Into the trajectory points
or as a separate field.)

	Contains path and goal tolerances in
* absolute position distance
* absolute rotation angular error
* absolute linear velocity
* absolute angular velocity

	queue field which is not really clear how it should be used

Features required from hardware / driver

	Control interface

Message definition

[CartesianTrajectoryGoal]
std_msgs/Header header # A stamp of 0 means "execute now"
geometry_msgs/PoseStamped tool # The frame which is being controlled
std_msgs/String[] posture_joint_names
CartesianTrajectoryPoint[] points
 std_msgs/Duration time_from_start
 geometry_msgs/Pose pose
 geometry_msgs/Twist twist
 std_msgs/Float64[] posture
 std_msgs/Float64 velocity
 std_msgs/Float64 acceleration
 std_msgs/Float64 jerk
std_msgs/Duration time_from_start
geometry_msgs/Pose pose
geometry_msgs/Twist twist
std_msgs/Float64[] posture
#trajectory_msgs/JointTrajectory posture # For determining the redundancy

CartesianTolerance path_tolerance # Tolerance for aborting the path
 float64 position
 float64 orientation # Permitted angular error
 float64 velocity
 float64 angular_velocity
CartesianTolerance goal_tolerance # Tolerance for when reaching the goal is considered successful
 float64 position
 float64 orientation # Permitted angular error
 float64 velocity
 float64 angular_velocity
std_msgs/Bool queue

[CartesianTrajectoryResult]
std_msgs/Int32 error_code # 0 if successful
CartesianTrajectoryPoint cartesian_state
trajectory_msgs/JointTrajectoryPoint joint_state
geometry_msgs/Twist pose_error
geometry_msgs/Twist twist_error
CartesianTolerance path_tolerance # Current tolerance used for the path

[CartesianTrajectoryError]
int32 SUCCESSFUL = 0
int32 ROOT_TRANSFORM_FAILED
int32 TOOL_TRANSFORM_FAILED
int32 PATH_TOLERANCE_VIOLATED
int32 INVALID_POSTURE

FZI

Our internal Cartesian trajectory definition.

This is bit different to the other approaches as it doesn’t require the user to
specify detailed timing and / or velocity information in each waypoint.
Instead, a maximum velocity and acceleration can be specified in both,
translation and rotation domain.

Feature list

	Global max velocities and accelerations instead of timing information

	Contains interpolation distance

	Contains offsets to shift the trajectory in Cartesian space

Features required from hardware / driver

	Control interface

	Trajectory interpolation

	Calculate timings and velocities / accelerations in waypoints

Message definition

[CartesianPoseTrajectoryGoal]
fzi_manipulation_msgs/CartesianExecutionConfig params
 string reference_frame
 string endeffector_frame
 float64 acceleration_lin
 float64 acceleration_rot
 float64 velocity_lin
 float64 velocity_rot
 float64 interpolation_lin
 float64 interpolation_rot
 geometry_msgs/Pose trajectory_offset
 bool has_trajectory_offset
 geometry_msgs/Pose tcp_offset
 bool has_tcp_offset
geometry_msgs/Pose[] points

Field details

Interpolation

The used interpolation distances are currently used to create setpoints between
the ones specified to get closer to the desired Cartesian linear motion when
this is being executed using a joint-based backend, e.g. by using an inverse
kinematics solver for each setpoint and creating a joint-based trajectory out
of that.

Trajectory Offset

The trajectory offset offsets the trajectory relative to the specified
reference_frame. This can be useful in situations where a trajectory shall
be executed in contact with a surface but it should be executed a couple of
centimeters above the surface for testing purposes. This is equivalent to
applying the specified transformation on the reference_frame before executing
the trajectory.

TCP Offset

The tcp offset shifts the trajectory relative to the specified
endeffector_frame. This is useful for example if a trajectory is specified
directly ontop of an object’s surface, but the endeffector should keep a
distance to the surface at all times, e.g. to make room for a gluing layer
being applied. This is equivalent to applying the specified transformation on
the endeffector_frame before executing the trajectory.

Gijs van der Hoorn

https://github.com/gavanderhoorn/common_msgs/pull/1/files

Feature list

	Contains accelerations

	Contains wrenches

	Contains posture information to handle redundancies

Features required from hardware / driver

	Control interface

Message definition

[LinearTrajectory]
std_msgs/Header header
string child_frame_id
LinearTrajectoryPoint[] points
 Duration time_from_start
 Pose pose
 Twist velocity
 Accel acceleration
 Wrench wrench
 sensor_msgs/JointState configuration # optional

Field details

The following list is not complete. Please see the linked PR for more information.

header.frame_id

The trajectory describes the motion of this frame relative to header.frame_id.

child_frame_id

Each point in the trajectory specifies at least a valid pose and a time at
which that pose must be reached by child_frame_id.

time_from_start

Time (in seconds) at which the system state encoded in this trajectory point
is to be attained, relative to the start of trajectory execution.

Required field.

It is an error to not initialise this field.

configuration

Preferred joint space configuration to achieve pose.

Optional field.

This field is encoded as a sensor_msgs/JointState to allow for the greatest
flexibility when describing joint configurations (compared to bitmasks or
lists of booleans/integers).

Only the name and position fields of the JointState message are used.
Values in other fields are ignored.

Joints present in the system, but for which no values are provided will be
considered unrestricted wrt possible IK solutions (ie: so called ‘free’
joints).

Leaving this field empty in case of kinematic systems for which multiple IK
solutions exist for a given pose, in general or because of their by-design
underconstraint nature (ie: in case of (hyper-)redundancy), could lead to
motion discontinuities (ie: mid-motion configuration changes) as IK solvers
may not provide the closest or preferred solutions automatically for those
types of systems.

Example of a 6D kinematic configuration with all joints given values:

configuration.name = ['joint_1', 'joint_2', ..., 'joint_6']
configuration.position = [0.1092, 0.4012, ..., 1.6323]

Drivers moving robots to this trajectory point are required to use an IK
solution either identical to or as close as possible to this joint
configuration.

Encoding a “configuration bitmask” (ie: shoulder, elbow, wrist) typically
used in industrial robotics into a ‘configuration’ field may be done as
follows:

configuration.name = ['joint_2', 'joint_3', 'joint_4']
configuration.position = [0.0, 0.0, 3.1415]

Note: if only ‘joint_4’ would have been specified, the shoulder and elbow
joints would not have been constrained, leading to potentially different
solutions being used.

Also note: as configuration encodes joint angles instead of binary states,
turn numbers and configuration flags can be expressed as a single joint angle.

Rethink Robotics Intera SDK

Cartesian trajectories for Rethink robots

Vendor specifics

	Teach pendant

	Integrated into the robot

	Programming / simulation software

	Intera 5

	Software

	Intera SDK

	Programming language

	Python

	Relevant hardware

	Robots Sawyer and Baxxter

Rethink robots support a native ROS interface. The ROS master runs on the robot.

	Further reading

	
	ros_github [https://github.com/RethinkRobotics]

	ros_manual [https://sdk.rethinkrobotics.com/intera/]

	wiki [https://sdk.rethinkrobotics.com/intera/Motion_Interface_Tutorial]

Feature list

	Contains accelerations

	For Cartesian segments, the joint positions are used as nullspace biases

	Joint interpolation or cartesian interpolation

	Hybrid Trajectories not possible

	All trajectory points take an optional WaypointOptions

	Contains path and goal tolerances in joint space

	Contains for each waypoint:
* Max joint speed ratio
* Max joint acceleration
* Max linear speed
* Max linear acceleration
* Max rotational speed
* Max rotational acceleration
* Corner distance

	Allows to specify active endpoint

Features required from hardware / driver

Message definition

Trajectories have some global options and a list of waypoint. Each waypoint itself can also have some local options.

[Waypoint]
Representation of a waypoint used by the motion controller

Desired joint positions
For Cartesian segments, the joint positions are used as nullspace biases
float64[] joint_positions

Name of the endpoint that is currently active
string active_endpoint

Cartesian pose
This is not used in trajectories using joint interpolation
geometry_msgs/PoseStamped pose

Waypoint specific options
Default values will be used if not set
All waypoint options are applied to the segment moving to that waypoint
WaypointOptions options

[WaypointOptions]
Optional waypoint label
string label

Ratio of max allowed joint speed : max planned joint speed (from 0.0 to 1.0)
float64 max_joint_speed_ratio

Slowdown heuristic is triggered if tracking error exceeds tolerances - radians
float64[] joint_tolerances

Maximum accelerations for each joint (only for joint paths) - rad/s^2.
float64[] max_joint_accel

###
The remaining parameters only apply to Cartesian paths

Maximum linear speed of endpoint - m/s
float64 max_linear_speed

Maximum linear acceleration of endpoint - m/s^2
float64 max_linear_accel

Maximum rotational speed of endpoint - rad/s
float64 max_rotational_speed

Maximum rotational acceleration of endpoint - rad/s^2
float64 max_rotational_accel

Used for smoothing corners for continuous motion - m
The distance from the waypoint to where the curve starts while blending from
one straight line segment to the next.
Larger distance: trajectory passes farther from the waypoint at a higher speed
Smaller distance: trajectory passes closer to the waypoint at a lower speed
Zero distance: trajectory passes through the waypoint at zero speed
float64 corner_distance

[Trajectory]
Representation of a trajectory used by the engine and motion controller.

optional label
string label

Array of joint names that correspond to the waypoint joint_positions
string[] joint_names

Array of waypoints that comprise the trajectory
Waypoint[] waypoints

Trajectory level options
TrajectoryOptions trajectory_options

[TrajectoryOptions]
Trajectory interpolation type
string CARTESIAN=CARTESIAN
string JOINT=JOINT
string interpolation_type

True if the trajectory uses interaction control, false for position control.
bool interaction_control

Interaction control parameters
intera_core_msgs/InteractionControlCommand interaction_params

Allow small joint adjustments at the beginning of Cartesian trajectories.
Set to false for 'small' motions.
bool nso_start_offset_allowed

Check the offset at the end of a Cartesian trajectory from the final waypoint nullspace goal.
bool nso_check_end_offset

Options for the tracking controller:
TrackingOptions tracking_options

Desired trajectory end time, ROS timestamp
time end_time

The rate in seconds that the path is interpolated and returned back to the user
No interpolation will happen if set to zero
float64 path_interpolation_step

[TrackingOptions]
Minimum trajectory tracking time rate: (default = less than one)
bool use_min_time_rate
float64 min_time_rate

Maximum trajectory tracking time rate: (1.0 = real-time = default)
bool use_max_time_rate
float64 max_time_rate

Angular error tolerance at final point on trajectory (rad)
float64[] goal_joint_tolerance

Time for the controller to settle within joint tolerances at the goal (sec)
bool use_settling_time_at_goal
float64 settling_time_at_goal

Vendor interfaces for Cartesian motions

In section Existing Cartesian Interfaces in ROS we had a closer look at existing Cartesian interface definitions and
suggestions. While most of them showed a great similarity to existing joint-based interfaces,
there’s one that sticks out. rep-I0003 suggests an interface that is closer to how most robot
manufacturers define their own interfaces. To pickup this thought, we had a closer look at different
vendor interfaces to check for similarities.

While existing interfaces such as the
control_msgs/FollowJointTrajectory.action [http://docs.ros.org/api/control_msgs/html/action/FollowJointTrajectory.html] are widely accepted
inside the ROS community it requires quite some effort to be filled correctly. Users have to
provide positions, velocities and timings for each waypoint significantly affecting the
path the robot is following between waypoints. To handle this, users usually leverage advanced tools
such as MoveIt! [https://moveit.ros.org/] to fill in all these constraints while giving away full
control of the actual path the robot’s joints and end effector will take.

Most robot manifacturers offer programming interfaces that focus more on point-to-point motions and
how interpolation between those waypoints is done. Some of them already expose their full
motion command set to ROS, e.g. Doosan. Having a closer look at how different manufacturers
handle motion commands and how they are interfaced, obviously makes sense in order to create a
standardized ROS interface for defining trajectories in such a way.

As a result of this we would like to extend rep-I0003 to not only offering such an interface
at planning level but also as a direct control interface for industrial robots.

	KUKA
	Trajectory composition

	Waypoint representation

	Trajectory parameterization and execution

	Universal Robots (UR)
	Trajectory composition

	Waypoint representation

	Trajectory parameterization and execution

	Fanuc
	Trajectory composition

	Waypoint representation

	Trajectory parameterization and execution

	Doosan
	Trajectory composition

	Waypoint representation

	Trajectory parameterization and execution

	Franka Emika
	Trajectory composition

	Waypoint representation

	Trajectory parameterization and execution

	ABB
	Trajectory composition

	Waypoint representation

	Trajectory parameterization and execution

	Yaskawa
	Trajectory composition

	Waypoint representation

	Trajectory parameterization and execution

	Summary of vendor interfaces
	Segment interpolation methods

	Parameterization of trajectory executions

	Specification of waypoints

KUKA

Cartesian trajectories for the KUKA robots (KRC/KRL).

Vendor specifics

	Teach pendant

	“KCP” (KUKA Control Panel) or smartPAD

	Programming / simulation software

	OrangeEdit editor / KUKA simulator Sim Pro

	Software

	KUKA System Software (KSS)

	User interface

	KUKA smartHMI (smart Human-Machine Interface)

	Programming language

	KRL (KUKA Robot Language)

	Relevant hardware

	KR C2 / KR C3 / KR C4 and probably others

	Further reading

	
	manual_collection [http://cncmanual.com/kuka-robotics/]

	manual_slides [http://media.ee.ntu.edu.tw/personal/pcwu/tutorials/kuka_user_manual.pdf]

	manual_advanced [http://www.wtech.com.tw/public/download/manual/kuka/krc2ed05/Operating%20and%20Programming.pdf]

Trajectory composition

Cartesian trajectories can be composed in three ways (see manual_slides [http://media.ee.ntu.edu.tw/personal/pcwu/tutorials/kuka_user_manual.pdf] p. 23-32).:

	
	Linear Cartesian motions

	LIN

[LIN]
$VEL.CP = 0.5
PTP Start point
LIN End point

	
	Circular motions

	CIRC

[CIRC]
$VEL.CP = 0.5
PTP Start point
CIRC Auxiliary point , Endpoint, CA Angle

	
	Joint space interpolation

	PTP

	joint space movement to a given goal, which can be specified in joint space or in Cartesian space.

	controller calculates the necessary angle differences for each axis

	Preferred motion if a high TCP speed is wanted and the interpolation between both waypoints doesn’t have to follow a predefined path.

[PTP]
$VEL.CP = 0.5
PTP Start point
PTP Auxiliary point C_PTP
PTP End point

	
	Additional

	SLIN

	The Spline Linear motion uses splines between linear motions

SCIRC

	The Spline Circular motion uses splines between circular motions

SPTP

	The Spline Point to Point motion is similar to PTP but it allows continuous spline motions.

Waypoint representation

(see kuka_system_software [http://www.wtech.com.tw/public/download/manual/kuka/krc4/KUKA%20KSS-8.3-Programming-Manual-for-SI.pdf] and manual_slides [http://media.ee.ntu.edu.tw/personal/pcwu/tutorials/kuka_user_manual.pdf])

	Linear

[LIN]
X 1000.00
Y 0.00
Z 1000.00
A 90.00
B 0.00
C 90.00

	Circular

[CIRC]
P1[]
 X 1000.00
 Y 1.00
 Z 1000.00
 A 90.00
 B 0.00
 C 90.00
P2[]
 X 1000.00
 Y -1.00
 Z 1000.00
 A 90.00
 B 0.00
 C 90.00
CA 180

	Point 2 Point

[PTP]
POS []
 X 1000.00
 Y 0.00
 Z 1000.00
 A 90.00
 B 0.00
 C 90.00
 S 6
 T 50

[PTP]
AXIS []
 A1 0
 A2 -90
 A3 90
 A4 90
 A5 0
 A6 -180

	Spline

[SPLINE]
SPL
 X 102
 Y 1
SPL
 X 104
 Y 0
SPL
 X 204
 Y 0

	Angles of rotation of the robot coordinate systems

	S and T specify a robot’s position unambiguously if more than one axis position is possible for
the same point in space (because of kinematic singularities). This is often written in integer
form, thus the values above.

	S (status): 3-bit binary value describing the robot’s configuration with predefined criteria

	T (turn): direction of a turn.
6-bit binary value, containing flip bits for each axis (0 when axis >= 0 deg, 1 when axis < 0
deg)

	Angle

	rotation axis

	A

	Z

	B

	Y

	C

	X

Trajectory parameterization and execution

(see manual_advanced [http://www.wtech.com.tw/public/download/manual/kuka/krc2ed05/Operating%20and%20Programming.pdf])

Specification of velocity

	Speed of TCP can be set within a move instructions in % by the ‘vel’ argument.

	For Continuous path motions ([LIN], [CIRC]) the velocity is constant from start to end.

	Realtive Joint Velocity can be set by: setJointVelocityRel(0.3)

	KUKA operation mode influence velocity

	Mode

	description

	velocity

	T1

	Manual Reduced Velocity

	max of 250mm/s

	T2

	Manual High Velocity

	as programmed

	AUT

	Automatic

	as programmed

	EXT

	Automatic external

	as programmed

	CPR

	Safe Operation

	max of 250mm/s

specification of acceleration

Relative Joint Acceleration can be set by: setJointAccelerationRel(0.5)

Blending

(source Angerer [https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/deliver/index/docId/3064/file/Dissertation_Angerer.pdf] and Vistein)

	Blending is enabled by the advance run mechanism enabling planning the next motion while executing a motion.

	To activate blending a motion needs to be marked as blendable by adding a keyword to the motion instruction. C PTP`for PTP motions and `C_DIS, C_VEL or C_ORI for motions in operation space.

	Blending between all motion types is supported. It is even possible to blend a PTP (joint space) into a LIN (Cartesian space) and vice versa.

	Blending can be done by defining a blend radius

	as a relative value: IMotion.setBlendingRel(0.2)

	in millimeters: IMotion.setBlendingCart(20)

Parallel IO operations

No information found so far

Online (real-time) trajectory modifications

Robot Sensor Interface (RSI) (see RobotSensorInterface [http://supportwop.com/IntegrationRobot/content/6-Syst%C3%A8mes_int%C3%A9grations/RobotSensorInterface/KST_RSI_31_en.pdf])

	supported since KRC-4 controller

	influence the position of the robot by external sensors.

	robot position can be influenced by external sensors through overlaying a programmed motion with external control, like position correction from a sensor-based system

	default 4 ms cycle time for accepting set point, hence external controller requires hard real-time

	usually correction data is provided in relative values and applied directly to the running program. However, as absolute values are possible, the robot can be controlled externally while a KRL program only providing a fixed start position runs in the background.

	communication between KUKA and external controller via UDP/IP on a dedicated network segment

	RSI context is a library with RSI objects for configuration of the signal flow

	RSI monitor offers online a visualization of the RSI signals.

Universal Robots (UR)

Cartesian trajectories for Universal Robots (CB3 / e-Series).

Vendor specifics

	Teach pendant

	UR+ / URcaps

	Programming / simulation software

	

	Software

	

	User interface

	PolyScope

	Programming language

	UR Script (similar to Python)

	Relevant hardware

	CB3 (UR3, UR5, UR10), e-Series (UR3e, UR5e, UR10e, UR16e)

	Further reading

	
	manual_collection [https://www.universal-robots.com/articles/ur-articles/urscript-dynamic-force-control/]

	conveyor_tracking [https://www.universal-robots.com/articles/ur-articles/conveyor-tracking-guide/]

	dynamic_force_control [https://www.universal-robots.com/articles/ur-articles/urscript-dynamic-force-control/]

Trajectory composition

Programming is done with move instructions (movement types) that move the robot to specified targets.

	
	Linear Cartesian motions

	MoveL

	tool moves in a straight line. To keep moving linearly between waypoints each joint performs a more complicated motion.

	parameters (pose, a=1.2, v=0.25, t=0, r=0):

	pose: target pose

	a: tool acceleration in m/s2

	v: tool speed in m/s

	t: time in s

	r: blend radius in m

	
	Circular motions

	MoveC

	tool moves on a circular arc segment to from current pose to target pose. Path point pose_via defines the arch’s shape

	parameters (pose_via, pose_to, a=1.2, v=0.25, r=0, mode=0):

	pose_via: path point

	pose_to: target pose

	a: tool acceleration in m/s2

	v: tool speed in m/s

	r: blend radius (of target pose) in m

	mode: (0: Unconstrained / 1: Fixed mode)

	
	Joint space interpolation

	MoveJ

	tool moves in a curved path interpolated in joint space. Each joint reaches location simultaneously. Preferred motion if a high TCP speed is desired.

	parameters (q, a=1.4, v=1.05, t=0, r=0):

	q: joint positions

	a: joint acceleration of leading axis in rad/s2

	v: joint speed of leading axisin rad/s

	t: time in s

	r: blend radius in m

	
	Additional

	MoveP

	tool moves linearly with constant speed with circular blends. Command can be extendend by a Circle move consisting of two waypoints.

	parameters (pose, a=1.2, v=0.25, r=0):

	pose: target pose

	a: tool acceleration in m/s2

	v: tool speed in m/s

	r: blend radius in m

Waypoint representation

Individually taught points have the following representation:

X
Y
Z
Rx (roll)
Ry (pitch)
Rz (yaw)

Trajectory parameterization and execution

Specification of velocity

The robot’s speed is defined in form of an argument by the move command.

	For MoveJ in deg/s: maximum joint speed

	For MoveL in mm/s: desired tool speed

Global specification of velocity are done separately for joint and TCP speed. The limits, which depend on the robot version, are stated in the table below. The actual speed limits also depend on the robot configuration.

	Function

	Description

	Limit

	Joint speed

	Max. angular joint speed

	180 ◦/s 1

	TCP speed

	Max. speed of the robot TCP

	5000 mm/s

	1

	Wrist joints of UR3 have max. angular speed of 360°/s and shoulder joints of UR10 have max
angular speed of 120 °/s.

Specification of acceleration

The acceleration of the robot’s motions is defined in form of an argument by the move command. Depending on the chosen movement type either the joints’ or TCP’s acceleration is definable.

	For MoveJ in deg/s2: joint acceleration

	For MoveL in mm/s2: tool acceleration

Blending

	Circular blending is part of MoveP. The blend radius’ size is by default a shared value between all the waypoints. A smaller blend radius leads to sharper and a biger radius to smoother paths.

	Blending can also be done by defining a blend radius for waypoints. In this case the trajectory blends around the waypoint, allowing the robot arm not to stop at the point.

Parallel IO operations

Can be triggered at certain points in the robot’s path

Online (real-time) trajectory modifications

	path offset

	a robot motion can be superimposed with a Cartesian offset

	Cartesian path offset is specified by the script function path_offset_set(offset, type)

	offset: Pose specifying the translational and rotational offset

	type: Specifies which coordinates to apply (BASE,`TCP`, MOTION, BASE_INVERTED)

	possible applications:

	imposing a weaving motion onto a welding task

	compensating for moving the robot base while following a trajectory

	dynamic force control (see dynamic_force_control [https://www.universal-robots.com/articles/ur-articles/urscript-dynamic-force-control/])

	provides control of the force parameters dynamically at runtime

	function to set robot to force mode: force_mode(task_frame, selection_vector, wrench, type, limits)

	conveyor tracking (see conveyor_tracking [https://www.universal-robots.com/articles/ur-articles/conveyor-tracking-guide/])

	adjusts a robot’s trajectory to a moving conveyor

	available for linear and circular conveyors

	CB3 and e-Series controller can decode signals at up to 40kHz

Fanuc

Cartesian trajectories for Fanuc robots

	Teach pendant

	FANUC iPendant touch

	Programming / simulation software

	ROBOGUIDE

	Software

	

	User interface

	Fanuc iHMI (Intelligent Human Machine Interface)

	Programming language

	FANUC Karel [https://www.tristarcnc.com/News/KarelProgrammingLanguage] (derived from Pascal)

	Relevant hardware

	R-30iA or R-J3iC (controller)

Further reading

	manual_collection [http://cncmanual.com/fanuc-robotics/]

	manual_slides [http://www.lakos.fs.uni-lj.si/wp-content/uploads/2017/12/Fanuc-robot.pdf]

	roboguide_help [http://cncmanual.com/download/4472/]

	reference_manual [http://cncmanual.com/fanuc-robotics-r-30ia-controller-karel-reference-manual/]

	Karel [https://www.tristarcnc.com/News/KarelProgrammingLanguage]

Trajectory composition

Programming is done with move instructions (robot movement types). (see manual_slides [http://www.lakos.fs.uni-lj.si/wp-content/uploads/2017/12/Fanuc-robot.pdf] p. 15-16):

	
	Linear Cartesian motions

	LINEAR: controlled movement of the TCP in a straight line from position A to B

	
	Circular motions

	CIRCULAR: The TCP follows a circular arc from the initial position to the destination

	
	Joint space interpolation

	JOINT: basic robot motion with nonlinear toolpath. Tool speed is determined with % of the maximum speed.

Waypoint representation

Points are described with position coordinates x,y, z and rotations w, p, r.

x
y
z
w (x-axis rotation)
p (y-axis rotation)
r (z-axis rotation)

Trajectory parameterization and execution

(see reference_manual [http://cncmanual.com/fanuc-robotics-r-30ia-controller-karel-reference-manual/])

Specification of velocity

As motions are initiated and controlled in TP the user can only adapt the robot’s motion speed with TP. System configurations and overrides influence the velocity additionally.

specification of acceleration

Specification of acceleration can be done via the following variables:

	acceleration time is fixe and proportional to the programmed speed.

	$USEMAXACCEL: enables ‘fast acceleration’ feature

Blending

Taught positions can either be fly-by points, or stop points:

	FINE: motion stops robot arm briefly at each way point

	CNT (continuous): robot approaches to the point with a distance specified by the CNT value without ever actually reaching the point, so the robots arm moves in a continuous trajectory

	CR (corner radius): like CNT, but specifying a radius for corner rounding allows to precisely define the shape of the blended motion

Parallel IO operations

No information found so far

Online (real-time) trajectory modifications

Dynamic Path Modifier (DPM)

	dynamic path modification using sensor data, so robot’s path can be adapted in real-time

	an external sensor provides postion and orientation offset for the next destination

	applicable to multiple groups

	possible applications:

	Weave operations

	Stationary tracking

	Orientation control

	J519 (Stream Motion)

	
	
	external protocol for:

	
	path trajectory planning

	near-real time streaming of the path trajectory to the robot

	enabling highly flexible and dynamic applications

	R912 (Remote Motion Interface)

	
	drip-feed for TP programs

Doosan

Cartesian trajectories for Doosan robots

Vendor specifics

	Teach pendant

	Teach Pendant

	Programming / simulation software

	Teach Pendant + DART platform on user PC

	Software

	FlexPendant SDK, Microsoft CE + Visual Studio

	Programming language

	DRL

	Relevant hardware

	Robots M0609, M1509, M1013 and M0617

Doosan robots support a ROS interface and wrap many of the DRL functionalities with ROS services.

	Further reading

	
	ros_github [https://github.com/doosan-robotics/doosan-robot]

	ros_manual [http://wiki.ros.org/doosan-robotics?action=AttachFile&do=get&target=Doosan_Robotics_ROS_Manual_ver0.971_20200218A%28EN.%29.pdf]

	manuals after free registration [https://robotlab.doosanrobotics.com/en/Join/normalSignUp]

Trajectory composition

The teaching of waypoints is done either in jog-operation or hand-guiding operation.
Doosan programming features a combination of basic instructions with a skill-based task composition.

	
	Linear Cartesian motions

	movel

	Move tool linearly to a specified target.

	Possible arguments: point, velocity, acceleration, time, blending radius, and others

	
	Circular motions

	movec

	Move in an arc via a point to a target point.

	Possible arguments: point, point, velocity, acceleration, time, blending radius, and others

	
	Joint space interpolation

	movej

	Move to the specified joint position.

	Possible arguments: target joint angles, velocity, acceleration, time, and others. Note that this command uses the different target type posj.

movejx

	Move to the specified point with joint interpolation. Similar to
movel, but without the guarantee of a linear motion result in
Cartesian space.

	Possible arguments: point, velocity, acceleration, time, radius for
blending, and others. Additionally, users specify the solution space with
a three-bit flag, representing shoulder (lefty vs righty), elbow (below vs
above) and wrist (flip vs no flip).

movesj

	Move along a spline curve path with joint interpolation, connecting
various joint-based waypoints.

	Possible arguments: list of joint positions, velocity, acceleration, time,
and others.

	
	Additional

	movesx

	Move along a spline curve from the current point to the target via waypoints.

	Possible arguments: List of points, velocity, acceleration, time, and others.

moveb

	Move along a list of path segments (lines, circles) with constant
velocity. Segments are blended.

	Possible arguments: list of points, velocity, acceleration, time, and
others.

move_spiral

	Motion along a spiral trajectory on a plane, which is perpendicular to a specified axis.

	Possible arguments: Revolutions, final spiral radius, and others

move_periodic

	Sine-based motion per axis.

	Possible arguments: Amplitude, period, and others

All move commands have an asynchronous variant, e.g. amovel corresponds to
movel, that allows the user to run other commands in parallel, i.e. the
main thread continues executing instructions. The blending parameter is not
available for these asynchronous move commands. Triggering concurrent motion
commands is caught with errors.

Waypoint representation

Individually taught points (type posx) have the following field representation:

x
y
z
w (z-direction rotation of reference coordinate system)
p (y-direction rotation of w rotated coordinate system)
r (z-direction rotation of w and p rotated coordinate system)

Individual points can be saved in various reference frames.

Trajectory parameterization and execution

Specification of velocity

	In form of a speed argument to move instructions. The speed is valid until
the next point

	Global adjustments of task space velocity with the set_velx function.
This value will be used as default for movel, movec and movesx if
nothing is specified.

	Global, trajectory-wide setting with change_operation_speed as a
percentage of the current speed setting

Specification of acceleration

	In form of a max acceleration argument to move instructions.

	Global adjustments of task space acceleration with set_accx. This is also
taken as default for the move commands movel, movec and movesx.

Blending

	Can be started and stopped with begin_blend and end_blend,
respectively. Upon activation, all points get blended during execution.

	Alternatively, segments can be executed with moveb, which is a constant velocity
blending motion for a path of given move segments.

Parallel IO operations

	I/O operations are managed independently of trajectory execution

	Users can trigger them e.g. with the asynchronous move instructions for individual segments.

Online (real-time) trajectory modifications

	Supports compliant trajectory execution, in which preference is given to
force control over motion control for in-contact tasks

	Trajectories can be modified with the threaded alter_motion function
with a cycle time of 100ms.

Franka Emika

Cartesian trajectories for Franka Panda

Vendor specifics

	Programming / simulation software

	Franka Desk, ROS

	Software

	Franka Control Interface (FCI)

	User interface

	Franka Desk

	Programming language

	C++

	Relevant hardware

	Panda with libfranka 0.7.1

	Further reading

	
	franka ros [https://github.com/frankaemika/franka_ros]

	documentation [https://frankaemika.github.io/docs/]

Trajectory composition

Franka has a dual way of programming its panda robot:
First, there’s the graphical-based programming using a browser interface (Desk) in which
users compose tasks with different apps. The apps range from simple to complex
and can be customized and shared with a community. Some apps are payed,
limiting this overview to the default available functionality.

	
	Linear Cartesian motions

	Cartesian Motion

	Move linearly along a list of points, allowing to set blending, velocity and acceleration.

	
	Additional

	Relative Motion

	Move relative to the current pose in a direction specified as vector.

Line

	Move along a line with specified velocity for a certain duration. The direction vector is taught with two points.

Lissajous Figures

	Realize lissajous figures in a plane. Allows to specify motion and amplitude in both directions.

Spiral

	Move in a spiral pattern in a plane. Provides configuration parameters, such as duration, width, etc.

The second way to realize Cartesian trajectories is directly over the Franka Control
Interface (FCI) (Research) that provides full control of the robot in form of
motion executors

	joint position

	joint velocity

	Cartesian pose

	Cartesian velocity

and controllers

	External controller: Users can command torques directly to the robot

	Internal joint impedance: Implicitly handled without user commands

	Internal Cartesian impedance: Implicitly handled without user commands

Motion executors and controllers can be combined to realize hybrid behavior.

Additionally, the robot has a ROS-control interface that uses FCI and
provides users with a base for own ROS controller developments.
According to the hardware interface conventions of ROS-control, Franka offers:

Joint-based interfaces for reading and writing

	hardware_interface::VelocityJointInterface

	hardware_interface::PositionJointInterface

	hardware_interface::EffortJointInterface

and custom Cartesian interfaces for reading and writing with

	franka_hw::FrankaPoseCartesianInterface

	franka_hw::FrankaVelocityCartesianInterface

All interfaces operate on a 1kHz cycle.

When using these research interfaces, users have the freedom (and necessity) to
implement motion types (e.g. with ROS controllers) on top of raw target and feedback signals
from the robot.

Waypoint representation

For users not having access to Franka’s Desk environment, it’s not straight forward to identify the waypoint representation.
However, at least on the research interface, a full robot state is available.
Subsets of this state could potentially be saved as waypoints when writing own motion commands.

Apart from the last commanded values, the state contains

joint level signals:
 - motor angles
 - motor angle derivatives
 - joint angles
 - joint angle derivatives
 - joint torque
 - joint torque derivatives
 - estimated external torque
 - joint collisions/contacts

Cartesian level signals:
 - Cartesian pose
 - load parameters
 - external wrench
 - Cartesian collision

Trajectory parameterization and execution

Since Franka’s FCI allows users to implement any desired behavior themselves,
the following list is limited to the possible configurations available for the
apps-based approach.

Specification of velocity

	In form of a percentage of the robot’s maximal velocity. Is done when
configuring instances of motion types

Specification of acceleration

	Also in form of a percentage of the maximal values. Is parameterized
during setup of the motion types

Blending

	Can be configured in the Cartesian Motion app

Parallel IO operations

	Specific apps trigger operations, such as Modbus Wait, Modbus Out and Modbus Pulse

Online (real-time) trajectory modifications

	Can be achieved implicitly through active impedance control and additional forces set with Apply Force

	External forces and commanded forces can overlay Cartesian motion types and alter the trajectories

ABB

Cartesian trajectories for ABB robots (IRC5 controllers)

Vendor specifics

	Teach pendant

	FlexPendant

	Programming / simulation software

	RobotStudio

	Software

	FlexPendant SDK, Microsoft CE + Visual Studio

	Programming language

	RAPID

	Relevant hardware

	Robots of the IRC5 controller

	Further reading

	
	manual_rapid [https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf]

Trajectory composition

Programming is done with move instructions (motion types) that move the robot
to specified targets.

	
	Linear Cartesian motions

	MoveL

	Move linearly to a specified target.

	Possible arguments: target point, speed, coordinate system, duration until point (replaces speed), and others

	
	Circular motions

	MoveC

	Build circular, open motion arcs, using a via-point and end point.

	Possible arguments: point on circle, target point, coordinate systems, duration, and others

	
	Joint space interpolation

	MoveJ

	Move the robot to specified points using joint interpolation. All joints
will reach their destination at the same time.

	Possible arguments: Target point, speed, zone, tool, and others. The tool
center point is the point moved to the destination.

Waypoint representation

Individually taught points (type robtarget) have the following field representation:

trans
rot
robconf
extax

Individual fields

	trans: x, y, z (position of tcp)

	rot: q1, q2, q3, q4 (orientation in quaternion notation)

	robconf: cf1, cf4, cf6, cfx (axis configuration of the robot for possibly
ambiguous axes). Each field (integer) indicates the configuration
quadrant for the numbered axis and is counted in positive or negative
quarter revolutions of 90° starting from zero:

...
-3 = axis is in (-270°, -180°)
-2 = axis is in (-180°, -90°)
-1 = axis is in (-90°, -0°)
 0 = axis is in (+0°, +90°)
 1 = axis is in (+90°, +180°)
 2 = axis is in (+180°, +270°)
...

	extax: [eax_a, eax_b, eax_c, eax_d, eax_e, eax_f] (list of up to six external hardware axes)

Different coordinate systems for point representations are possible, such as
world or various object coordinate systems.

Trajectory parameterization and execution

Specification of velocity

	In form of a speed argument to move instructions during teaching of fly-by points. The
speed is valid until the next point

	Path segment specific with VelSet (overrides global velocity settings
until reset). Can be either specified as percentage of the current global
velocity or can be set to become the new max velocity.

	Global adjustments with motsetdata, affects all points

Specification of acceleration

	Path segment specific accelerations with AccSet (overrides global
acceleration until reset). Provokes slower acceleration and deceleration
(percentage) of the global settings.

	Global adjustments with motsetdata, affects all points. This also includes
adjustment of ramping accelerations etc.

Blending

	Taught positions can either be fly-by points, or stop points

	During MoveL, fly-by points are automatically blended, leading to
adjusted corner paths (parabolas). Stop points are exactly passed.

	The blending configuration is handled with zone data that specifies how corner paths are realized.

	A parameterization of different zones allows to design corner paths in
which tool orientation and Cartesian position can be started and stopped
Individually.

Parallel IO operations

	MoveLDO: Move linearly and trigger an I/O operation at the target’s middle corner path

	MoveCDO: Move in a circle and trigger an I/O operation at the target’s middle corner path

Online (real-time) trajectory modifications

	Offsets to paths can be realized with CorrWrite and special correction
generators. No information on real-time capability found.

Yaskawa

Cartesian trajectories for the Yaskawa Motoman robots

Vendor specifics

	Teach pendant

	Teach panel (programming pendant)

	Programming / simulation software

	Partly PLC support

	Software

	Customization of teach pendant: C++ and C#

	Programming language

	INFORM

	Relevant hardware

	Controllers YRC1000, DX100, NX100 and probably others.

	Further reading

	
	operator’s manual (YRC1000) [https://www.motoman.com/getmedia/C92FC6B8-A188-496A-89B1-7B9B76B9A903/178645-1cd.pdf.aspx?ext=.pdf]

	inform language (YRC1000) [https://www.motoman.com/getmedia/346F8450-7888-448E-A145-6BAA3B894B74/178649-1CD.pdf.aspx?ext=.pdf]

	on blending [https://www.youtube.com/watch?v=OY0ABhVj1dQ]

	on circles and splines [https://www.youtube.com/watch?v=XEN7DoR-CG0]

Trajectory composition

Teaching trajectories is done on the basis of a point-2-point approach with different motion (interpolation) types:

	
	Linear Cartesian motions

	MOVL

	For linear motion to the point

	
	Circular motions

	MOVC

	For circular motion with three points for each arc

	
	Joint space interpolation

	MOVJ

	For joint-interpolated motion to the point

	
	Additional

	MOVS

	For spline motion with parabolic interpolation between three points

IMOV

	For incremental linear motion, starting from a point

There are also application specific routines that help in the process of trajectory programming while teaching points.
These routines may include additional sensors, such as force-torque sensors for approaching surfaces or contour following.
The final obtained trajectories, however, are still built with basic motion types.

Waypoint representation

Individually taught points have the following representation:

X
Y
Z
Rx (roll)
Ry (pitch)
Rz (yaw)

Different coordinate systems for point representations are possible.

Trajectory parameterization and execution

Specification of velocity

	Point-level: Execution speeds are taught on a per-point basis, applied from
the previous to the current point, respectively. As an example, the speed
taught at point P2 is applied from point P1 until P2. Users can also
adjust speed as a percentage to the trajectory-global play speed.

	Trajectory-global: Users can choose and adjust different execution speeds
on a discrete scala with the SPEED instruction

Specification of acceleration

	Point-level: Users can adjust acceleration ACC and deceleration DEC as
adjustment ratios in the range of 20% - 100% for each point

Blending

	Is done with setting a position level (PL) incrementally for MOVL
points, with PL from 0 = no bending radius to 8 = max. bending radius

Parallel IO operations

	Due to synchronous execution, users apply IO operations immediately before/after move instructions.

Online (real-time) trajectory modifications

	No information found so far

Summary of vendor interfaces

This section will summarize the different vendor interfaces to explicitly show common patterns that
we could build an interface upon.

Segment interpolation methods

	
	linear
Cartesian

	circular
Cartesian

	spline
Cartesian

	joint

	KUKA

	yes

	yes

	yes

	yes

	UR

	yes

	yes

	no

	yes

	Fanuc

	yes

	yes

	no

	yes

	Doosan

	yes

	yes

	yes

	yes

	Franka Emika

	yes

	(yes)

	(yes)

	(yes)

	ABB

	yes

	yes

	no

	yes

	Yaskawa

	yes

	yes

	yes

	yes

The investigated interfaces differ in the amount and richness of provided motion types,
such that the table above summarizes the best supported subset.

Apart from Franka Emika, all investigated robot interfaces could natively
execute trajectories composed of linear, circular and joint interpolated motion segments.
A possible Cartesian trajectory definition could therefore build upon these three types.

Franka Emika is a special case here, as they do not offer all functionality in an open programming
language, but they have pre-built solution modules that help users getting their tasks done.
Therefore, such interfaces do exist, but in a different manner than the other brands and should not veto the trajectory definition.

Parameterization of trajectory executions

For each vendor interface, We looked at four parameter categories that will be important for trajectory definitions:
Velocity, Acceleration, Blending, and Parallel IO commands.

The table below summarizes the findings to highlight commonly supported configuration by each vendor.
We use our own abbreviations to keep the table clear.

For velocity / accelerations, users can set:

(a) Global target parameter for whole trajectory
(b) Local target parameter for motion or waypoint
(c) Global limit for whole trajectory
(d) Local limit for motion or waypoint
(e) Percentage of globally defined parameter

For blending, users can set:

(1) Radius per waypoint
(2) Radius per motion
(3) Global radius for all motions or waypoints
(4) Advanced radii definitions

	
	Velocity

	Acceleration

	Blending

	Parallel IO

	KUKA

	(a) (e)

	(e)

	(1) (2) (4)

	??

	UR

	(b) (c) (d)

	(b)

	(1) (3)

	Synchronized with waypoints

	Fanuc

	(a) (e)

	(c)

	(1)

	??

	Doosan

	(a) (b) (e)

	(c) (d)

	(1)

	In parallel with asynchronous motions

	Franka Emika

	(e)

	(e)

	(2) (4)

	User-custom with apps

	ABB

	(a) (b)

	(a) (c) (e)

	(1) (4)

	Separate motion commands with IOs triggered in the middle

	Yaskawa

	(a) (b)

	(e)

	(1)

	Directly before or after motion commands

Most interfaces provide similar parameterization of velocity and accelerations.
However, blending is differently implemented by the vendors. The (4) = Advanced radii definition mentioned in the column Blending refers to blending for Cartesian motions for Franka Emika, blending through detailed corner paths for ABB and blending between joint and Cartesian motion for KUKA.

The double ?? indicate that we didn’t find sufficient information on this subject.

Specification of waypoints

	
	Waypoint
Representation

	Posture
definition

	KUKA

	xyz-rpy

	3 bit configuration,
6 bit turn directions

	UR

	xyz-rpy

	qnear

	Fanuc

	xyz-rpy

	3 bit configuration

	Doosan

	xyz-rpy (zyz)

	3 bit configuration

	Franka Emika

	user’s choice

	user’s choice

	ABB

	xyz-quat

	quadrants for axes

	Yaskawa

	xyz-rpy

	3 bit configuration

Franka’s waypoint representation for the app-based approach was not obvious during this review.
However, their fully exposed interface with low-level access to joint drivers for the FCI-based approach
offers users to implement specific representations themselves.
We used user’s choice to indicate this.

Both KUKA and ABB offer more detailed posture definitions with respect to the other vendor interfaces.
A least denominator of 3 bit posture configurations is therefore meaningful for a common interface
with UR being an exception, as they use a notation of a nearby joint configuration.

Posture definition is discussed in section Conclusion / Proposed Interface. We suggest to follow the
definition there, as it should be possible to map them to the vendors’ representations.

ABB stands out with their quaternion representation for orientation, avoiding potential gimbal locks.
Due to the unique mapping from angle-sequence representations to quaternions,
however, all observed vendor interfaces will work nicely with a roll-pitch-yaw
notation.

Proposed interface

To be determined….

	Integration into / combination with REP-I0003?

	Open questions?

	How to integrate into ROS control?

Conclusion / Proposed Interface

Cartesian trajectory definitions have long been a complicated topic in ROS.
The investigated definitions showed that quite some differences exist about
generality vs expressiveness vs ease of use, not to mention the somewhat
orthogonal industrial way of doing things. In fact, most people will agree
that it’s probably impossible to cover every detail, to meet all requirements
of all possible users of such an interface.
Nevertheless, with this document having a lot of information in one place, we
believe that there are sufficient similarities to start a new trial.

If you don’t want to read the reasoning, you can jump to the proposed interface directly.

Components

Here’s our proposal for Cartesian Trajectory Definitions.
We present the new message types step by step and explain our design decisions,
basing them on conclusions from the previous section Existing Cartesian Interfaces in ROS.

CartesianTrajectoryPoint

One common thing in all existing proposals is a Cartesian trajectory point definition. This
would be fairly similar to the trajectory_msgs/JointTrajectoryPoint [http://docs.ros.org/melodic/api/trajectory_msgs/html/msg/JointTrajectoryPoint.html] message.

A jerk is added to the trajectory point definition, as well, so controllers executing a Cartesian
trajectory can provide a smoother trajectory execution. As there is currently no message available
to encode this, a custom message will be provided initially. Essentially, it would be a copy of
geometry_msgs/Accel but reusing this would be semantically incorrect. There is also an open
discussion [https://github.com/ros/common_msgs/issues/137] on adding Jerks to geometry_msgs
which would be the preferable solution.

CartesianTrajectoryPoint.msg

duration time_from_start
geometry_msgs/Pose pose
geometry_msgs/Twist twist
geometry_msgs/Accel acceleration
<to_be_determined_msgs>/Jerk jerk

The definition above doesn’t contain any frame_id or timestamp information raising the need to
contain this into a parent message.

Postures

When assembling Cartesian points to a trajectory additional posture information could be
given to specify the desired joint configuration in case of multiple possible solutions coming from
an IK solver or planner.

In a first naive attempt we define posture information inside a separate message to decouple it from
the geometric waypoint definition. A given joint configuration defines the configuration being close
to the desired IK solution. Multiple solutions can be checked for similarity to the given
configuration.

NaiveCartesianPosture.msg

float64[] joint_values

The user has to make sure that the number of entries given in the posture array match
the number of joints similar to the trajectory_msgs/JointTrajectoryPoint [http://docs.ros.org/melodic/api/trajectory_msgs/html/msg/JointTrajectoryPoint.html] message.
Gijs van der Hoorn proposed to use a sensor_msgs/JointState [http://docs.ros.org/melodic/api/sensor_msgs/html/msg/JointState.html] message for posture
information. However, in contrast to that we propose to use a plain float64[] field instead
of a full joint state in order to prevent redundant information / containing a lot of unused fields.
This on the other hand raises the requirement to specify the joint names on a higher level as
mentioned above.

The posture definition proposed above is raises a couple of questions / concerns as discussed inside
#5 [https://github.com/fzi-forschungszentrum-informatik/fzi_robot_interface_proposal/issues/5].

Should the field be made optional?

	There might be kinematic structures that only result in one single IK solution for a given Cartesian
pose.

	Posture constraints are not necessarily known or relevant when defining / executing a trajectory.
The user might not have a preference for a specific configuration in which case a mandatory
posture definition will force the user to pick one instead.

In order to give users the choice instead of enforcing posture definitions, we propose to have
posture definitions optional.

Should partial posture specifications be supported?

	It might be beneficial to allow partial posture definitions such as a shoulder lift joint or elbow
joint value only. However, allowing this will require to have the joint names available at this
stage, as well.

	This would effectively allow both, a “flip bits” approach as used by many vendors,
as well as a “qnear” approach where the user defines a (partial) joint configuration which is
close to the desired configuration.

	By allowing partial posture definitions, users can choose to specify selected joints only, while
leaving the other joints for optimization e.g. by an IK solver or planner. Especially when
combined with a CartesianTolerance this would be a rather powerful feature.

As a result, we propose to allow partial posture definitions.

Should postures be made a member of CartesianTrajectoryPoint?

	One argument against that is that CartesianTrajectoryPoint should be a pure geometric
representation of a setpoint independent of any robot configuration. This way, a sequence of
CartesianTrajectoryPoint objects could be reused and applied to different robot kinematics and / or
use-cases. Posture definition should be a part of the trajectory execution but not the trajectory
definition. However, as raised in #5 (comment) [https://github.com/fzi-forschungszentrum-informatik/fzi_robot_interface_proposal/issues/5#issuecomment-666235226],
we should not mix up tool paths and robot trajectories. As this proposal is about robot
trajectories, CartesianTrajectoryPoint instances should be treated as trajectory setpoints,
not tool paths and therefor it makes sense to incorporate the posture definition into the
setpoint.

	If posture is not included into the CartesianTrajectoryPoint structure, there has to be a way
of matching posture definitions to trajectory setpoints. For this, either a unique identifier for
each waypoint would be needed or users would have to provide a posture definition for each
waypoint to get a 1-to-1 mapping. This would however conflict with the posture definition being
optional for each waypoint. Additionally, there would have to be additional code required checking
that each waypoint has a corresponding posture definition.

	If the posture configuration is defined for each CartesianTrajectoryPoint it can be left empty
for each waypoint by simply not defining it. Thus, if a user chooses not to define any posture,
no additional action would be required. If postures would be stored in a parallel datastructure on
trajectory level, users would have to define an empty posture for each waypoint individually.

For the sake of usability we propose to include the posture definition into the
CartesianTrajectoryPoint. This comes with the cost of a CartesianTrajectoryPoint being coupled
to a specific kinematic setup, though.

Should posture_joint_names be a member of CartesianPosture?

	Defining joint names in each CartesianPosture would effectively increase the amount of
redundant information in case of a fully defined posture specification for each waypoint, which
motivated us to exclude it from our naive posture definition above.

	Integrating joint names into the posture definition adds the possibility to define partial posture
constraints, e.g. only requiring shoulder and elbow configuration.

As reasoned above partial posture definitions are a desired feature which is why including the joint
names into the posture definition is required.

Posture definition

With the reasons above, we propose the following CartesianPosture to be included into
CartesianTrajecoryPoint:

CartesianPosture.msg

Posture joint names may reflect a subset of all available joints (empty posture definitions are
also possible). The length of posture_joint_names and posture_joint_values have to be equal.

string[] posture_joint_names
float64[] posture_joint_values

CartesianTrajectory

To get a trajectory from multiple CartesianTrajectoryPoint objects the next container is a
trajectory object consisting of multiple trajectory points.

CartesianTrajectory.msg

header.frame_id is the frame in which all data from CartesianTrajectoryPoint[] is given
Header header
CartesianTrajectoryPoint[] points
string controlled_frame

At this stage we include a time stamp through the header message.
Note that header also includes a frame_id, which is the assumed reference frame for the data given in points.
The link that shall follow the trajectory is specified with controlled_frame.
Some of
the existing proposals use a geometry_msgs/Pose field to express the points’ reference frame. However, we think that using names as identifiers makes this interface more versatile, because it delegates possible lookups to where this information is easier available.

CartesianTolerance

In the investigated interfaces tolerances are often proposed as scalar values for each of [position,
orientation, velocity, angular velocity]. In contrast we propose specifying constraints for each
axis individually by using 3-dimensional datatypes:

CartesianTolerance.msg

geometry_msgs/Vector3 position_error
geometry_msgs/Vector3 orientation_error
geometry_msgs/Twist twist_error
geometry_msgs/Accel acceleration_error

With this definition users can define tolerances per axis, where rotational constraints are meant to
be angle differences in the local coordinate system. Therefore we use geometry_msgs/Vector3
instead of geometry_msgs/Pose for position_error and orientation_error.

CartesianTrajectoryAction

Similar to the control_msgs/FollowJointTrajectory [http://docs.ros.org/melodic/api/control_msgs/html/action/FollowJointTrajectory.html] action we
propose an action interface for executing Cartesian trajectories.

FollowCartesianTrajectory.action

CartesianTrajectory trajectory
CartesianTolerance path_tolerance
CartesianTolerance goal_tolerance
duration goal_time_tolerance

int32 error_code
int32 SUCCESSFUL = 0
int32 INVALID_GOAL = -1 # e.g. illegal quaternions in poses
int32 INVALID_JOINTS = -2
int32 OLD_HEADER_TIMESTAMP = -3
int32 PATH_TOLERANCE_VIOLATED = -4
int32 GOAL_TOLERANCE_VIOLATED = -5
int32 INVALID_POSTURE = -6

string error_string

Header header
string controlled_frame
CartesianTrajectoryPoint desired
CartesianTrajectoryPoint actual
CartesianTolerance error

For the result and feedback we again are following the methods from joint-based trajectory
execution. The errors get extended by a posture-related error flag.

TLDR; Proposed interface

As elaborated in the previous section we propose the following action interface

FollowCartesianTrajectory.action

CartesianTrajectory trajectory
 # header.frame_id is the frame in which all data from CartesianTrajectoryPoint[] is given
 Header header
 CartesianTrajectoryPoint[] points
 duration time_from_start
 geometry_msgs/Pose pose
 geometry_msgs/Twist twist
 geometry_msgs/Accel acceleration
 <to_be_determined_msgs>/Jerk jerk
 CartesianPosture posture
 string [] posture_joint_names
 float64[] posture_joint_values
 string controlled_frame
CartesianTolerance path_tolerance
 geometry_msgs/Vector3 position_error
 geometry_msgs/Vector3 orientation_error
 geometry_msgs/Twist twist_error
 geometry_msgs/Accel acceleration_error
CartesianTolerance goal_tolerance
 geometry_msgs/Vector3 position_error
 geometry_msgs/Vector3 orientation_error
 geometry_msgs/Twist twist_error
 geometry_msgs/Accel acceleration_error
duration goal_time_tolerance

int32 error_code
int32 SUCCESSFUL = 0
int32 INVALID_GOAL = -1 # e.g. illegal quaternions in poses
int32 INVALID_JOINTS = -2
int32 OLD_HEADER_TIMESTAMP = -3
int32 PATH_TOLERANCE_VIOLATED = -4
int32 GOAL_TOLERANCE_VIOLATED = -5
int32 INVALID_POSTURE = -6

string error_string

Header header
string controlled_frame
CartesianTrajectoryPoint desired
 duration time_from_start
 geometry_msgs/Pose pose
 geometry_msgs/Twist twist
 geometry_msgs/Accel acceleration
 <to_be_determined_msgs>/Jerk jerk
CartesianTrajectoryPoint actual
 duration time_from_start
 geometry_msgs/Pose pose
 geometry_msgs/Twist twist
 geometry_msgs/Accel acceleration
 <to_be_determined_msgs>/Jerk jerk
CartesianTrajectoryPoint error
 duration time_from_start
 geometry_msgs/Pose pose
 geometry_msgs/Twist twist
 geometry_msgs/Accel acceleration
 <to_be_determined_msgs>/Jerk jerk

Note

For readability reasons we left the commonly-used ROS messages collapsed.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Cartesian Interface in ROS

 		
 Introduction

 		
 Target of this project

 		
 Contents of this document

 		
 Contribution

 		
 Requirements

 		
 Project limitations

 		
 Existing Cartesian Interfaces in ROS

 		
 rep-I0003

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Willow Garage (2010)

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Field details

 		
 Banachowicz

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Banachowicz2

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 ROS-Answers question by arennuit

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Pilz

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Descartes Trajectory

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 MoveIt!

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 johnmichaloski

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 FZI

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Field details

 		
 Gijs van der Hoorn

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Field details

 		
 Rethink Robotics Intera SDK

 		
 Feature list

 		
 Features required from hardware / driver

 		
 Message definition

 		
 Vendor interfaces for Cartesian motions

 		
 KUKA

 		
 Trajectory composition

 		
 Waypoint representation

 		
 Trajectory parameterization and execution

 		
 Universal Robots (UR)

 		
 Trajectory composition

 		
 Waypoint representation

 		
 Trajectory parameterization and execution

 		
 Fanuc

 		
 Trajectory composition

 		
 Waypoint representation

 		
 Trajectory parameterization and execution

 		
 Doosan

 		
 Trajectory composition

 		
 Waypoint representation

 		
 Trajectory parameterization and execution

 		
 Franka Emika

 		
 Trajectory composition

 		
 Waypoint representation

 		
 Trajectory parameterization and execution

 		
 ABB

 		
 Trajectory composition

 		
 Waypoint representation

 		
 Trajectory parameterization and execution

 		
 Yaskawa

 		
 Trajectory composition

 		
 Waypoint representation

 		
 Trajectory parameterization and execution

 		
 Summary of vendor interfaces

 		
 Segment interpolation methods

 		
 Parameterization of trajectory executions

 		
 Specification of waypoints

 		
 Conclusion / Proposed Interface

 		
 Components

 		
 CartesianTrajectoryPoint

 		
 CartesianTrajectory

 		
 CartesianTolerance

 		
 CartesianTrajectoryAction

 		
 TLDR; Proposed interface

_static/comment-bright.png

_static/ajax-loader.gif

